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The ability to find novel bioactive scaffolds in compound similarity-based virtual screening experiments
has been studied comparing Tanimoto-based, ranking-based, voting, and consensus scoring protocols. Ligand
sets for seven well-known drug targets (CDK2, COX2, estrogen receptor, neuraminidase, HIV-1 protease,
p38 MAP kinase, thrombin) have been assembled such that each ligand represents its own unique chemotype,
thus ensuring that each similarity recognition event between ligands constitutes a scaffold hopping event. In
a series of virtual screening studies involving 9969 MDDR compounds as negative controls it has been
found that atom pair descriptors and 3D pharmacophore fingerprints combined with ranking, voting, and
consensus scoring strategies perform well in finding novel bioactive scaffolds. In addition, often superior
performance has been observed for similarity-based virtual screening compared to structure-based methods.
This finding suggests that information about a target obtained from known bioactive ligands is as valuable
as knowledge of the target structures for identifying novel bioactive scaffolds through virtual screening.

Introduction

Finding bioactive compounds of novel chemotype using the
information of already known bioactive small molecules and
scaffolds is often referred to as scaffold hopping.1 The ability
of various descriptors and similarity measures to facilitate
clustering of bioactive compounds and ultimately enable scaffold
hopping has been studied for some time.2-10 The seminal work
of Brown and Martin suggests that 3D methods offer no
advantages over topological searches when bioactive compounds
are identified by similarity.2,3 Recent work by Hert et al.
involving 15 2D descriptors as well as 11 well-established drug
targets suggests that 2D fingerprints are indeed powerful tools
for similarity-based virtual screening.11,12 Similar results have
been obtained by others.5,13 In contrast, recent work suggests
also that 3D descriptors, if applied appropriately with respect
to conformation generation and alignment, can provide similarity
searching results that can compete with 2D descriptors.14-16 For
instance, Jenkins at al. has presented work showing that 3D
pharmacophore feature type descriptors called FEPOPS can
outperform standard 2D descriptors for five standard drug targets
in a scaffold hopping-oriented virtual screening protocol.15

Similarly, Good et al. have demonstrated for four drug targets
applying a variety of 2D and 3D descriptors that 3D pharma-
cophore fingerprints are able to assist better than 2D descriptors
in scaffold hopping, resulting in varying enrichments of novel
chemotypes identified in virtual screens.17 While 2D descriptors,
especially topological descriptors, are expected to work better
if the actives are topologically more related to each other than
to the database of negative controls, an equally clear relationship
cannot be established for 3D pharmacophore type descriptors.
Therefore, this study is particularly concerned with the ability
of 3D pharmacophore descriptors to facilitate scaffold hopping
in virtual screening for two different cases: (i) The distribution
of topological similarities among actives is comparable to that
between actives and negative controls. (ii) The topological
similarity between actives is significantly higher than the
topological similarity between actives and negative controls.

3D descriptors used in the context of similarity searching have
mostly been based on the idea of capturing pharmacophore
features such as hydrophobic or aromatic moieties, hydrogen
bond (HB) acceptors or donors, and negative and positive
ionizable groups. Fingerprints have been introduced that store
the information of pairs, triplets, or quartets of pharmacophore
features for multiple conformations in the form of binned
distance ranges.18-25 3D pharmacophore fingerprints are now
being used more regularly as descriptors for QSAR as well as
for the design of compound libraries.24 Here we investigate the
ability of 3D pharmacophore fingerprints to identify novel
bioactive chemical classes through ligand-based virtual screening
in comparison to atom pair descriptors as well as Daylight
fingerprints as representative topological fingerprint26 using the
Tanimoto coefficient as similarity measure.27 While recent work
has mainly focused on exploring a broad range of 2D and 3D
descriptors, we focus here on evaluating different ranking
strategies including voting and consensus scoring to improve
virtual screening performance for scaffold hopping. In addition,
the studies are complemented by structure-based virtual screen-
ing experiments using Glide2.5 that allow for comparing ligand-
based and structure-based virtual screening strategies on equal
footing.

Methods

Descriptor Calculation. Daylight fingerprints (DF) have been
calculated using a Daylight toolkit program. 3D 3-point phar-
macophore fingerprints (PFP) have been calculated using an
in-house implementation of the pharmacophore fingerprint
descriptor as outlined in detail by McGregor and Muskal23 using
six distance ranges and seven pharmacophore features, resulting
in 10 549 bins. Multiple compound conformations have been
generated using OMEGA.28 To smooth hard distance bin
assignments for distances that fall within 0.2 Å of a distance
boundary (e.g., 4.5 Å as border between distance bins 1 and
2), two resulting PFP pharmacophore triplets have been recorded
using both distance bins individually. PFP have been generated
for each molecule using either one Corina29-generated confor-
mation only (PFP1) or using the union of fingerprints over 50
OMEGA-generated conformations (PFP50). The Atom Pair30
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(AP) and Ghose and Crippen31 descriptors have been imple-
mented in-house.

Ranking Methods. 1. Tanimoto Average (TA): For each
compoundj the average Tanimoto similarity TAj has been
calculated as

whereτij is the Tanimoto similarity between an active compound
i and all database compounds (actives and negative controls)j.
Nactive is the number of all active compounds in the virtual
screening database.δij is the Kronecker Delta function.

2. Rank Average (RA): For each compoundj the average
rank RAj has been calculated as

where rankij is defined as the rank compoundj assumes when
compared to activei according to itsτij when allτij are sorted
in descending order.

3. Voting (V2): For each compoundj the average rank V2j
has been calculated as

where voteij ) max(0, int(11-rankij/0.02NDB)), andNDB is the
number of compounds in the entire virtual screening database.
This procedure gives 10 votes to the first 2% of compounds, 9
votes for the next 2%, and so on. Finally, for compounds in the
18-20% rank bracket, 1 vote is given. Compounds in the
bottom 80% of the ranking list for each individual active receive
no votes. The votes for each compound are then averaged over
all actives in the dataset.

4. Voting with Tanimoto cutoff (VT): For each compoundj
the average rank VTj has been calculated as in eq 3 with the
additional condition that voteij ) 0 if τij < τthreshold. For the
current studyτthresholdhas been set to 0.35 as it has appeared to
be the optimal number throughout a variety of data sets studied.

5. Consensus ranking (CR): Although several ideas of
consensus scoring have been explored in the context of structure-
based virtual screening,32,33 consensus ranking in the context
of similarity ranking has not been a focus in the past.
Nevertheless, it has been recognized by others as a desirable
path forward.17 Therefore we have devised a consensus method
that works similarly to a clustering algorithm with predefined
cluster variance. The idea is to find the largest cluster of similar
ranks among all ranking methods applied. Given a maximum
allowed rank distance among a set of ranks for a given
compound, the largest cluster is being identified and the average
rank is taken among the ranks in this cluster. If no cluster can
be established (all ranks are singletons), the average over the
ranks of all methods is taken for the given compound.

The consensus rank idea described above is implemented as
follows. For each of the four methods described above, the

respective ranks for methodk and compoundj are called
rMethodk

j. All pairwise rank differences between the methods
for a given compoundj are calculated as

A threshold distance∆thresholdis introduced to define a binary
function that reads

In addition, we defineNj
k for a methodk and a compoundj

as

Intermediate consensus ranks for a compoundj centering on
each of the methodsk individually are then defined as

Examining all four intermediate CRjk the following rules are
applied to choose the final consensus rank CRj for a given
compoundj: The maximum ofNj

k for a given compoundj and
all methodsk, Nj

max, is examined among the four CRj
k. If Nj

max

) 1, no consensus has been reached. Therefore, the average
over all four methods is used to calculate CRj. If Nj

max > 1 and
only oneNj

k assumesNj
max then CRj ) CRj

k for this method. If
Nj

k ) Nj
max > 1 for several methodsk, then among those, the

method with the smallest sum of rank difference,S∆j
k, is chosen

to calculate CRj.

Note that it is possible due to the threshold rules that the
voting methods produce a 0 score with the result that the ranks
of all respective compounds become identical. Therefore,
methods for which the score becomes 0 for a given compound
j are excluded for its consensus calculations. Throughout this
study∆thresholdhas been set to 80.

6. Maximum Rank (MR) and Maximum Tanimoto (MT):
Complementing the average Tanimoto (TA) and average rank
(RA) scores, MR and MT have been calculated by taking the
maximum rank or maximum Tanimoto similarity a given
compoundj experiences when compared to all activesi.

Data Preparation. The following data sets of ‘actives’ have
been prepared from the literature for the present study: 12
CDK2 ligands,34 13 COX2 inhibitors,35 12 estrogen receptor
(ER) ligands,36 37 11 HIV-1 protease inhibitors,38 4 neuramini-
dase inbibitors,39 6 p38 MAP kinase inhibitors,40 and 8 thrombin
inhibitors.41 These compounds are depicted in Figures 1-7. Note
that the compounds have been chosen with maximum structural
diversity in mind. Each compound is meant to represent its own
chemotype in order to recognize each virtual screening hit based
on descriptor similarity as scaffold hopping event. Therefore,
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the number of compounds in each dataset varies between 4
(neuraminidase) and 13 (COX2). These compounds serve as
the only actives in the virtual screening studies. The actives
are combined with 9969 drug-like compounds from the MDDR
database as putative negative controls or ‘inactives’ (none of
which are considered active). The MDDR compounds have been
chosen following rules outlined elsewhere.42 3D structures of
all compounds have been generated using Corina.29 Conforma-
tions have been generated using OMEGA.28 Daylight finger-
prints (DF) of length 1024 have been generated for all
compounds. The ionization states of the compounds have been
determined using the Ionizer tool from Schrodinger Inc.43

Please note again that there are no other actives in the data
set than those in the ‘active’ set for each target. For each
individual similarity based virtual screen one of the actives
against a given target is considered as template. All other actives
are then mixed with the inactives from the MDDR compound
set, and the similarity of the template to each compound in this
mixed set is calculated. This procedure ensures that each
recognition event between actives against the same target is
guaranteed to be a scaffold hopping event. The various ranking
methods described above are then applied as different techniques
to combine the individual virtual screening results for all active
compounds serving in succession as templates for a given target.

Results and Discussion

Scaffold Hopping Potential of Different Descriptors.The
ability of 2D and 3D descriptors to recognize different active
scaffolds based on similarity is illustrated in Figure 8. The figure
shows a set of 537 active kinase inhibitors (activities range
between 5 and 500 nM IC50 in a molecular assay for a kinase
target) that belong to five different chemical classes: 315
carbolines, 150 indolinones, 44 diaminopyrimidines, 23 benz-
imidazoles, and 5 compounds with other scaffolds grouped
together into one class. For each compound, the similarity
against all the other 536 actives has been calculated using the
Tanimoto coefficient and the respective descriptors. For each
compound, the best rank for a compound belonging to a different
compound class has been calculated and averaged over all 537
compounds. For each descriptor, this procedure has resulted in
four points representing the average recognition of the first
representative for each of the four other scaffolds. If one
particularly focuses on the recognition of the first alternative
scaffold, Figure 8 illustrates that the PFP fingerprint has the
best potential of finding a novel chemotype. Topological
descriptors such as Ghose and Crippen atom types,31 atom
pairs,30 and Daylight fingerprints44 are expectedly less able to
find different scaffolds before exhausting same scaffold ana-
logues. This is particularly apparent for the Daylight fingerprint
descriptor where the average recognition of a different scaffold
coincides with the theoretically worst case of scaffold hopping
(all compounds of a particular scaffold are recognized first

Figure 1. CDK2 ligands.

Figure 2. COX2 ligands.
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before a compound of a different scaffold is chosen). This
behavior has been observed before.5,17 It is no shortcoming of
the Daylight fingerprint but rather an expression of the strength
of the Daylight fingerprints as a topological descriptor. As we
expect, Daylight fingerprints first recognize the similarity to
all compounds with the same scaffold before accepting others.

Examining the recognition of compounds within a set of
actives provides a feel for the ability of a descriptor to recognize
similarities across chemotypes. However, the above analysis
does not answer the question of how these descriptors are able
to identify bioactive compounds with novel scaffolds in a virtual
screening scenario where putative bioactive compounds are
mixed with large numbers of inactives. This point can easily
be understood if one considers the limiting case where molecules
are ordered at random. In that case, one can easily find novel
scaffolds with high ranks, but the enrichment will be near 1.0
because the random case makes no distinction between active
and inactive molecules. Hence the bulk of this study is
concerned with the behavior of 3D and 2D descriptors in a
virtual screening setting.

Scaffold Hopping through Compound Similarity-Based
Virtual Screening. Seven potential drug discovery targets have
been chosen to investigate the scaffold hopping capabilities of
PFP, atom pair, and Daylight fingerprints as representatives of
3D and 2D descriptors: CDK2, estrogen receptor (ER), COX-

2, neuraminidase, HIV-1 protease, p38 MAP kinase, and
thrombin. Figures 1-7 illustrate the active compounds used in
the study. Each compound has been chosen to represent its own
chemotype. Depending on the published ligand structures this
has resulted in different numbers of compounds being used for
each of the targets. In the virtual screening studies presented
here the ability to recognize known ligands with higher similarity
than putative inactives represented by a set of 9969 compounds
taken from the MDDR database is considered a scaffold hopping
event. Since we cannot guarantee that the MDDR compounds
are not active against one of our targets (since not every
molecule has been tested against every activity), there may be
a small amount of noise in this study. Therefore, the enrichments
in our tables and figures maybe somewhat underestimated
relative to an ideal list of compounds that contains no false
inactives.

As suggested by others26 for this study, we have decided to
make the 2D topological fingerprint a standard for comparison
also. The design of the study includes two different scenarios.

(I) The distribution of pairwise Tanimoto similarities of
Daylight fingerprints among the active compounds for a given
target is very similar to the distribution comparing the actives
against the MDDR negative control compounds. This is true
for the targets CDK2, COX2, and to a lesser extent for ER
(Figure 9). For these cases the topological fingerprints are
obviously less likely to be able to identify actives of other
structural classes among the negative control compounds from
the MDDR. In this case of low 2D descriptor competitiveness
we expect to see the PFP descriptors perform significantly better
than the topological fingerprint descriptor.

(II) The distribution of pairwise Tanimoto similarities of
Daylight fingerprints among the active compounds for a given
target is shifted toward higher similarities compared to the same
distribution between the actives and the MDDR negative
controls. This is true for the targets neuraminidase, HIV-1
protease, p38 MAP kinase, and thrombin (Figure 10). For these
cases the topological fingerprints are much better suited for
picking up actives in upper ranks of the virtual screen. In these
cases of high 2D descriptor competitiveness we hope to see
the 3D descriptor perform at least as good as the 2D descriptor.

Recent work has mainly focused on finding optimal 3D
descriptors for compound similarity-based virtual screening and
scaffold hopping.15,17Here we limit ourselves to only one type
of 3D descriptor (PFP) and focus instead on optimizing the
scoring (ranking) method for virtual screening and scaffold
hopping. As outlined in the Methods section we have employed
a series of different ranking methods to determine an optimum
virtual screening protocol for scaffold hopping: Tanimoto
averaging (TA), rank averaging (RA), voting (V2), Tanimoto

Figure 3. Estrogen receptor ligands.

Figure 4. Neuraminidase ligands.
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threshold voting (VT), maximum Tanimoto (MT), maximum
rank (MR), and a consensus ranking approach among the first
four methods (CR). In addition, minimum rank and minimum

Tanimoto similarity methods have been tested; however, because
of their inferior performance, results are not reported here in
detail. Figures 11-17 examine the performance of the four

Figure 5. HIV-1 protease ligands.

Table 1. Effect of Consensus Scoring on Enrichment Factors at 2% of Database Sampleda

PFP1 PFP50

screen TA RA V2 VT MT MR CR TA RA V2 VT MT MR CR

CDK2 0.0 12.5 12.5 0.0 0.0 0.0 12.5 4.2 4.2 4.2 0.0 0.0 4.2 4.2
COX2 3.9 3.9 3.9 7.7 7.7 7.7 3.9 11.5 3.9 7.7 7.7 7.7 7.7 11.5
ER 16.7 0.0 4.2 16.7 16.7 33.3 8.3 8.3 0.0 8.3 12.5 8.3 29.2 8.3
NEUR 50.0 50.0 50.0 50.0 50.0 37.6 50.0 50.0 25.0 12.5 25.0 25.0 37.5 37.5
HIV1 31.8 27.3 22.7 31.8 31.8 27.3 22.7 36.4 27.3 27.3 36.4 36.4 31.8 36.4
P38 8.3 8.3 25.0 0.0 0.0 0.0 8.3 0.0 0.0 16.7 16.7 0.0 0.0 25.0
THROM 0.0 0.0 0.0 12.5 12.5 0.0 0.0 6.3 6.3 6.3 6.3 0.0 6.3 6.3

DF AP

screen TA RA V2 VT MT MR CR TA RA V2 VT MT MR CR

CDK2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 8.3 0.0
COX2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 7.7 11.5 11.5 7.7 11.5 11.5
ER 8.3 0.0 0.0 16.7 0.0 16.7 4.2 8.3 0.0 4.2 12.5 16.7 12.5 4.2
NEUR 12.5 0.0 0.0 25.0 25.0 25.0 0.0 37.5 12.5 37.5 37.5 25.0 37.5 37.5
HIV1 9.1 18.2 18.2 9.1 0.0 0.0 18.2 27.3 22.7 22.7 27.3 36.4 27.3 22.7
P38 8.3 8.3 8.3 0.0 0.0 0.0 8.3 25.0 8.3 25.0 25.0 25.0 25.0 25.0
THROM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 0.0 18.8 18.8 0.0 25.0 12.5

a The maximum enrichment factor that can be achieved is 50 for 2% sampling.
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primary ranking techniques using Daylight fingerprints, atom
pairs, and 3D pharmacophore fingerprints as descriptors for the

seven targets introduced above. For the 3D pharmacophore
fingerpints the figures contain curves for a single 3D conforma-
tion generated by using Corina,29 (PFP1) as well as a fingerprint
that has combined the pharmacophore fingerprint information
from 50 OMEGA28 generated conformations (PFP50).

Table 1 contains the enrichment factors for the individual
ranking methods and the consensus ranking after the top-ranking
2% of the database have been retrieved. The enrichment factor
is defined as the quotient between percent actives retrieved and

Figure 6. p38 MAP kinase ligands.

Figure 7. Thrombin ligands.

Figure 8. Scaffold hopping among 537 actives for a particular kinase
belonging to 5 scaffold classes studied for different descriptors.

Figure 9. Distribution of pairwise Tanimoto similarities measured
using Daylight fingerprints for all active ligand-active ligand pairs
(dashed line) and all active ligand-MDDR negative control compound
pairs (solid line) for the indicated targets. The distributions are
normalized by the area under the curve.
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percent of total database compounds (actives+ negative
controls) retrieved. Examining Table 1 reveals the following
performance trends. Single scoring methods vary significantly
in performance. MR performs best among all methods for the
atom pair descriptor. VT is best with DF, CR is best with PFP50
(followed by TA as individual method), and V2 is best with
PFP1. The consensus score is calculated using four individual
methods (TA, RA, V2, VT) throughout this article. Although
including MR and MT increases the consensus scores, in some
cases it does not do so consistently (data not shown). Consensus
scoring, with one exception (p38, PFP50), never leads to results
better than the best individual scoring method used to calculate

CR. In 12 cases the consensus method mirrors the best individual
method used to derive CR, in 7 cases consensus scoring has an
averaging effect, and only in 5 cases consensus scoring mirrors
the worst individual method. In 5 cases all methods yield the
same enrichment. This observation suggests that consensus
scoring leads to more robust results compared to the individual
methods. For the consensus score, PFP1 and PFP50 perform
slightly better overall than AP does. However, studying the best
descriptors for each ranking methods reveals that AP descriptors
perform best for VT, MR, and MT. For V2, AP and PFP1
perform equally well. For TA, PFP50 performs best; for RA,
PFP1 shows the best results, and for CR, PFP1 and PFP50
perform equally well. It is also noticeable that in most cases,
particularly for methods that rely on ranking, voting improves
the performance.

Figures 11-13 examine virtual screening data for scenario I
(no topological similarity bias exists among actives compared
to actives vs inactives, see Figure 9). Figure 11 shows a
comparison of PFP1 (green), PFP50 (red), AP (blue), and DF
(black) percent CDK2 actives retrieved as a function of the
virtual screening rank according to four different ranking
schemes. As expected for a scenario I case, the enrichment of
actives is much better for the 3D fingerprint than it is for the
topological fingerprint, which is close to the result that would
have been obtained randomly. Interestingly, while voting
improves the performance of DF, rank averaging (RA) performs
best for the PFP method very closely followed by V2, albeit
V2 delivers recognition of the first actives at a slightly better
rank. The Tanimoto-based approaches, TA and VT, perform
significantly worse. Somewhat surprisingly it has been found
that involving multiple conformations does not improve the
virtual screening performance for CDK2. However, as observed
for other targets also, PFP50 offers early recognition of actives
at ranks higher than those for the best PFP1 retrieved actives.
Consensus ranking at the 2% database retrieval point is able to
provide enrichment that is as good as that of the best single
method (Table 1).

Figure 12 shows the virtual screening results for COX-2. As
illustrated in Figure 9, COX2 belongs to scenario I also.
Accordingly, DF performs similarly to CDK2 delivering little
enrichment that is close to random. The PFP methods lead to
higher enrichment. Interestingly, PFP1 and PFP50 perform more
similarly albeit PFP50 performs better at early recognition of
actives. More importantly, Table 1 shows that the consensus
approach is able to carry the favorable PFP50 performance using
TA over to CR resulting in a significantly better consensus-
based performance of PFP50 over PFP1 at the 2% mark. The
AP descriptor appears particularly strong for V2. At the 2%
mark AP and PFP50 perform equally well using consensus
scoring.

For estrogen receptor (Figure 13) all descriptors perform
similarly using different methods, with the exception of RA for
which DF and AP perform better than the PFP descriptors.
However, all descriptors perform significantly worse using the
RA method compared to the other methods. The two voting
methods perform significantly better than their respective
counterparts (the Tanimoto-similarity-emphasizing VT improves
compared to TA and the rank-based V2 improves compared to
RA). The PFP1 descriptor using the VT ranking method
performs best. Particularly, PFP1 exhibits a very good enrich-
ment at low ranks. The consensus score acts as averaging
function between the methods (Table 1).

Figures 14-17 examine virtual screening data for scenario
II (there is a topological similarity bias among actives compared

Figure 10. Distribution of pairwise Tanimoto similarities measured
using Daylight fingerprints for all active ligands-active ligand pairs
(dashed line) and all active ligand-MDDR negative control compound
pairs (solid line) for the indicated targets. The distributions are
normalized by the area under the curve.
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to actives vs inactives, see Figure 10). Neuraminidase exhibits
the best virtual screening performance among the selected targets
(Figure 14). This has to be expected because of the prevalence
of comparably rare ionizable pharmacophore features being
present in the actives. Because these prominent pharmacophore
features are better represented in the PFP descriptors, it is not
surprising that they perform better here than DF, albeit DF
shows a very good performance too as has to be expected for
scenario II. It is interesting to note that for these high
performance cases, voting does not seem to be beneficial for
the PFP methods. VT performs particularly badly for PFP1.
Nevertheless, the consensus method is able to retrieve an optimal
enrichment (Table 1). The AP descriptor performs strongly with
the Tanimoto based approaches outranking the PFP methods
particularly at low ranks.

Figure 15 illustrates the performance of PFP, AP, and DF
descriptors for HIV-1 protease. The PFP and AP descriptors
perform particularly well with PFP50 being best at the rank
based approaches. For the nonvoting methods using multiple

conformations seems beneficial here. Interestingly, the PFP and
AP descriptors consistently outperform DF for all methods
despite a clear topological preference existing among the HIV-1
ligands (Figure 15). Consensus scoring, again, is able to preserve
the best enrichment among all methods (Tables 1 and 2) for
PFP50, AP, and DF (worst for PFP1).

Figure 16 shows for p38 MAP kinase that rank-based methods
prevail over Tanimoto-based methods. PFP descriptors perform
better than DF. AP performs best for the Tanimoto based
approaches. Voting improves the enrichment, particularly for
the ranking methods. Although AP outperforms the PFP
descriptors for most methods, PFP50 manages to improve his
consensus score (the only case observed) over all individual
methods to deliver an enrichment which is identical to that
obtained with AP (Table 1).

For thrombin, Figure 17 shows that voting significantly
improves the scaffold hopping performance for both the rank-
based and Tanimoto-based methods, particularly for the PFP
descriptors. AP performs significantly better than all other

Figure 11. CDK2: Percentage of active ligands retrieved as function of virtual screening rank using Daylight fingerprints (black), atom pairs
(blue) single confirmation pharmacophore fingerprints (PFP1) (green) and pharmacophore fingerprint descriptor with 50 conformations (PFP50)
(red) for different ranking methods.

Figure 12. COX2: Percentage of active ligands retrieved as function of virtual screening rank using Daylight fingerprints (black), atom pairs
(blue) single confirmation pharmacophore fingerprints (PFP1) (green) and pharmacophore fingerprint descriptor with 50 conformations (PFP50)
(red) for different ranking methods.
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descriptors for thrombin. Unfortunately, for thrombin the
consensus scoring method has not been able to overcome the
bad performance of three of the four methods at the 2% mark
for PFP1. The good performance of VT has not resulted in a
better CR. PFP1 has performed weaker for thrombin than for
other targets while AP and DF have performed better. A possible
explanation for this week performance could be the high
flexibility of the thrombin ligands used in the study. To test
this hypothesis, PFP1 results have been obtained using cocrystal
structures of thrombin ligands when available instead of Corina
generated structures. Unfortunately, this modified PFP1 descrip-
tor has not improved performance (data not shown).

Generally it is observed that Daylight fingerprints do not
perform well for scaffold hopping. This observation is not
surprising and has been noted before.5,17 Also, the good
performance of atom pair descriptors has been noted before.
Encouraging is the finding that in case of no topological bias
(e.g., for CDK2) 3D pharmacophore descriptors perform better
than 2D descriptors.

Comparison with Structure-Based Virtual Screening.As
discussed above, Table 1 summarizes the enrichment factors
achieved in the ligand-based virtual screens against the seven
target proteins studied. For the same targets and compound sets,
Table 2 compares the achieved enrichment factors from the
similarity virtual screens with those obtained using Glide2.5
docking against the same target crystal structures as used by
others for virtual screening studies of the same targets.46,47 In
addition to the enrichment factors provided in Table 2, Figure
18 shows the percent actives retrieved at 2, 5, and 10% of the
highest ranks of the entire database for the Glide2.5 virtual
screen and the similarity based virtual screening methods.
Comparing the similarity-based virtual screening results with
Glide2.5 enrichments, the docking method provides the highest
enrichment only in case of COX2 followed closely by the AP
descriptor. For all other targets, several similarity methods
perform better than docking. PFP1, PFP50, and AP perform
best in different cases. Glide2.5 performs significantly weaker
than all similarity methods for the CDK2 and neuramindase

Figure 13. ER: Percentage of active ligands retrieved as function of virtual screening rank using Daylight fingerprints (black), atom pairs (blue)
single confirmation pharmacophore fingerprints (PFP1) (green) and pharmacophore fingerprint descriptor with 50 conformations (PFP50) (red) for
different ranking methods.

Figure 14. Neuramindiase: Percentage of active ligands retrieved as function of virtual screening rank using Daylight fingerprints (black), atom
pairs (blue) single confirmation pharmacophore fingerprints (PFP1) (green) and pharmacophore fingerprint descriptor with 50 conformations (PFP50)
(red) for different ranking methods.
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targets. This finding is particularly noteworthy comparing the
Glide2.5 virtual screening results with those reported in the
literature for the same targets (using the same crystal structures
of the targets) but using different sets of actives and inactives
(Table 3).45,46As we have observed before, enrichment factors
cannot always be compared on equal footing when different
actives (and numbers of actives) and inactives are used.47

Nevertheless, the large discrepancies in docking results presented
in Table 3 are somewhat surprising. Scaffold hopping is often
taken for granted in structure-based approaches because no
information about ligands is taken into account. However, the
actual ability of structure-based approaches to scaffold hop has
rarely been quantified. While reports of enrichment factors in
structure-based virtual screening experiments are abundant, no
comprehensive study has been presented yet illustrating how
much ligand structure similarity among actives contributes to
their enrichment in structure-based virtual screens. While much
care is taken in diversifying decoys48 for structure-based virtual
screening experiments, actives often come from the same class

of compounds. The results presented in Table 3 suggest that
investigating scaffold hopping abilities of docking approaches
will be a worthwhile topic for future research.

As noted before by others5,17 ligand similarity-based methods,
particularly the 3D pharmacophore fingerprint methods, perform
surprisingly well compared to the structure-based methods.
Especially comparing the methods on equal footing (Glide2.5
results and similarity-based results have been obtained with the
same actives/negative controls) suggests that the knowledge of
active ligands may be as valuable as a crystal structure for the
purpose of virtual screening, particularly when new scaffolds
need to be identified. However, to draw more solid conclusions
from the presented comparison between docking and compound
similarity approaches more extensive studies involving more
targets, more diverse ligands and different crystal structures for
docking experiments are needed. The latter point may be
particularly relevant in cases of known induced fit effects such
as for Phe-in and Phe-out binders in kinases such as p38 used
in this study.

Figure 15. HIV-1 protease: Percentage of active ligands retrieved as function of virtual screening rank using Daylight fingerprints (black), atom
pairs (blue) single confirmation pharmacophore fingerprints (PFP1) (green) and pharmacophore fingerprint descriptor with 50 conformations (PFP50)
(red) for different ranking methods.

Figure 16. p38 MAP kinase: Percentage of active ligands retrieved as function of virtual screening rank using Daylight fingerprints (black), atom
pairs (blue) single confirmation pharmacophore fingerprints (PFP1) (green) and pharmacophore fingerprint descriptor with 50 conformations (PFP50)
(red) for different ranking methods.
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Conclusions

Different ranking strategies for compound similarity-based
virtual screening and scaffold hopping have been explored for
seven well established drug targets. Significant differences
between scoring methods have been observed. Rank-based and
Tanimoto similarity-based methods show varying performance
depending on the target at hand. Maximum ranking and
maximum Tanimoto similarity against a set of know actives
perform well in some cases. Voting methods have often but
not consistently been observed to increase virtual screening
performance. A simple consensus method has been introduced

and applied. There has been only one example found where
the consensus ranking has outperformed the best single ranking
method. However, in the majority of cases the consensus score
has been able to either display the highest rank achieved by
any single method or to show an average between the methods
used. For the PFP50 descriptor consensus scoring has performed
better than any individual score considering the set of seven
targets studied here. Therefore, it is recommended to use the
consensus score because of the high volatility among ranking
performances of the single functions used in this study.

Figure 17. Thrombin: Percentage of active ligands retrieved as function of virtual screening rank using Daylight fingerprints (black), atom pairs
(blue) single confirmation pharmacophore fingerprints (PFP1) (green) and pharmacophore fingerprint descriptor with 50 conformations (PFP50)
(red) for different ranking methods.

Figure 18. Comparison of percent actives retrieved using Glide2.5 docking and actives retrieved with similarity methods as described in this study
for seven protein targets (CDK2, COX2, estrogen receptor, HIV-1 protease, neuramindase, p38 MAP kinase, and thrombin). The suffix _G refers
to Glide2.5 docking results, _P1 refers to PFP1, _P50 refers to PFP50, _D refers to DF, and _AP refers to virtual screening results obtained with
the AP descriptor. For the ligand-based descriptors the consensus ranking method (CR) has been used.

Table 2. Comparison of Enrichment Factors at 2% of Database
Sampleda

Glide2.5 PFP1 CR PFP50 CR DF CR AP CR

CDK2 0.0 12.5 4.2 0.0 0.0
COX2 15.4 3.9 11.5 0.0 11.5
ER 4.2 8.3 8.3 4.2 4.5
NEUR 0.0 50.0 37.5 0.0 37.5
HIV1 27.3 22.7 36.4 18.2 22.7
P38 8.3 8.3 25.0 8.3 25.0
THROM 6.3 0.0 6.3 0.0 12.5

a The maximum enrichment factor that can be achieved is 50 for 2%
sampling. The in-house docking results reported for Glide2.5 are based on
the same set of actives/negative controls used for obtaining the results for
the similarity-based methods. The consensus scores (CR) are reported for
the similarity-based methods.

Table 3. Comparison of Structure-based Virtual Screening Results with
Literature Dataa

ScreenScore Lit. Glide2.5 Lit. Glide2.5 in-house

CDK2 - 12.5 0.0
COX2 10.0 16.6 15.4
ER 22.0 32.5 4.2
NEUR 11.0 - 0.0
HIV1 - 36.7 27.3
P38 12.0 7.8 8.3
THROM 26.0 25.0 6.3

a The maximum enrichment factor that can be achieved is 50 for 2%
sampling. The GLIDE2.5 (column 2) and ScreenScore (column 1) data have
been taken from the literature using sets of actives/negative controls different
from those used in this study.45,46 The in-house docking results reported
for Glide2.5 (column 3) are based on the same set of actives/negative
controls used for obtaining the results for the similarity-based methods
(identical to first column of Table 2).
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Nevertheless it should be noted that the maximum rank performs
also well particularly in combination with the atom pair
descriptor yielding the overall best result comparing all scoring
methods and descriptors averaged over all 7 targets. Especially
the much better performance of atom pair descriptors for
thrombin is noteworthy.

The design of the studies has allowed interpreting virtual
screening hits as scaffold hopping events at the same time. Given
this added challenge to a virtual screening setup the achieved
enrichments of actives in upper ranks of the virtual screening
hit lists, albeit varying greatly among targets, have generally
been surprisingly high. Although the enrichment has been mostly
higher in cases of greater topological similarities among the
actives compared to negative controls, even in cases of low
topological advantage the enrichment rates using pharmacophore
fingerprint descriptors have been encouragingly high. In general,
pharmacophore fingerprints have been shown to outperform
topological descriptors represented by Daylight fingerprints even
in cases of topological similarity bias among active ligands
compared to negative controls. Interestingly, single conformation
pharmacophore fingerprints have performed better than multi-
conformational fingerprints in most cases. Applying known
bioactive conformations for some of the thrombin inhibitors has
not improved virtual screening results compared to Corina-
generated conformations. Atom pair descriptors have performed
well throughout the targets studies here. They have been
particularly strong for thrombin. In other cases atom pair
descriptors have performed comparably to pharmacophore
fingerprint descriptors.

Compound similarity-based virtual screening and structure-
based virtual screening results for the same targets and
compound sets have been compared. Several of the ligand-based
virtual screening methods have performed better than Glide2.5
docking for all but one target (COX2). Interestingly, the virtual
screening enrichments obtained with Glide2.5 docking using
the compound sets designed for this scaffold hopping study are
mostly much lower than those reported in the literature for other
data sets using the same targets and docking method. This
observation illustrates the sensitivity of virtual screening
outcomes to the composition of the data sets. More importantly,
it also raises the question to what extent structure-based virtual
screening results may depend on the diversity of the actives-
a question that is worth exploring more thoroughly in the future.

Most encouraging is the finding that even in cases of no
topological bias toward the pairwise similarities among the
actives compared to the negative controls, particularly for
CDK2, the pharmacophore fingerprint methods perform very
strongly compared to the structure-based virtual screening
method. This finding suggests that knowledge about active
ligands for a drug target can be as valuable as a crystal structure
for obtaining novel scaffolds from virtual screening.
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